
Towards a logic-based, multi-agent simulation theory

Jacinto D́avila1 and Kay Tucci1,2

1 CESIMO (Simulation and Modelling Research Center),
2 SUMA (Sistema Unificado de Microcomputación Aplicada),

Universidad de Los Andes, Ḿerida 5101, Venezuela

Abstract. This paper introduces a multi-agent simulation theory. This theory is intended to provide a formal specifi-
cation to guide the development of a multi-agent simulation platform. We are extending a mature simulation language:
GLIDER [DGS96] with the abstractions required to model systems where autonomous entities (agents) perceive and
act upon their environments.To achieve this, we draw directly from AI mainstream research on multi-agent theories.
In particular, the unified agent architecture described in [KS96] and in [Dáv97], and the model of situated multi-agent
systems presented in [FM96] are employed in the extended framework. Languages of diverse nature (ranging from pro-
cedural, network-oriented to logic based programming) are, we believe, an important contribution to a multi-disciplinary
approach for modelling and simulation.
Keywords: Multi-agent simulation, logic-based agents, influences, reactions, GLIDER.

1 Introduction

This paper introduces a multiagent simulation theory. This theory is intended to provide a formal
specification to guide the development of a multi-agent simulation platform. We are extending a
mature simulation language: GLIDER [DGS96], with the abstractions required to model systems
where autonomous entities (agents) perceive and act upon their environments. In GLIDER, a system
is conceived as a structured collection of objects that exchange messages. Such message exchange
and processing is closely related to the scheduling and occurrence of events as in DEVS [Zei76],
the conceptual framework on which GLIDER is based. Modelling a system (for simulation purposes)
amounts to write a GLIDER code describing a network of nodes. Those nodes state the behaviors of
the objects in the system and how, when and with which they exchange messages. GLIDER offers to
the programmer a set of node types (Gate, Line, Input, Decision, Exit and Resources give its name to
the language, but there are others) which the programmer instantiates to represents the objects he or
she wants to simulate.

In the work presented here, we are enriching GLIDER’s semantics (and syntax) to accommodate
the description of agents. Agents will correspond to those entities in the modelled system that can
perceive their environment, have goals and beliefs and act, according to those beliefs, to achieve
those goals, presumably changing the environment in the process.

This enriching of GLIDER requires more than an additional set of language elements. We have
to extend its current framework to included the behavior of the new, specialized objects: the agents.
To achieve this, we draw directly from AI mainstream research on multi-agent theories. In particular,
the unified agent architecture described in [KS96] and in [Dáv97], and the model of situated multi-
agent systems presented in [FM96] are employed in the extended framework. In the end, we expect
to have a family of languages, supported by a unique platform, to model and simulate multi-agent
systems. Languages of diverse nature (ranging from procedural, network-oriented to logic based ab-
stractions) are, we believe, an important contribution to a multi-disciplinary approach for modelling
and simulation.

This paper is organized as follows: The first section offers a review of Ferber and Müller’s multi-
agent theory [FM96]. We recall what influences and reactions are and how they support an action
model that Ferber and M̈uller use to found their theory. In the second section, again by referring to
[FM96], we re-introduce the hierarchy of models of agents proposed by Genesereth and Nillson in

[GN88], that Ferber and M̈uller use to create a corresponding hierarchy of multi-agent systems. We
extend those hierarchies by describing an agent that is both reactive and rational (not accounted for
by Genereseth and Nillson’s work) and its corresponding multi-agent system. In the third section, we
use the foundations led in the previous sections to sketch an example that illustrates an operational
semantics for our family of languages: GALATEA.

2 A theory of influences and reactions.

In [FM96], Ferber and M̈uller (hereafter F-M) present a theory of multi-agent systems. They describe
dynamics systems with a sort ofexhancedstate in which the universe being modelled is described via
two types of “state components”:influencesandenvironmentalvariables. The later correspond to what
is commonly known as state variables. Whereas influences are “what come from inside the agents and
are attempts to modify a course of events that would have taken place otherwise” [FM96] (Pg. 73).
By using influences, F-M provide for the description of concurrent events and state transitions.

Influences are a convenient way to cater for that intermediate notion of an agent “trying” to cause
some change in its environment, as separated from the actual occurrence of such a change. The actual
occurrence is regarded as areactionof the environment to all the influences presented at a particular
time. That is how they talk about influences and reactions. F-M declare that their model of action
relies on three main concepts:

1. A distinction between influences and reactions, to deal with simultaneous actions.
2. A decomposition of a whole system dynamics,δ, into two parts: the dynamics of the environment

(σ, theenvironmental state) and the dynamics of the agents situated in this environment (γ, the set
of all their influences). σ ∈ Σ, the set of all the posibleenvironmental statesandγ ∈ Γ , the set of
all the possible sets of influences.

3. A description of the different dynamics by abstract state machines, which we use in the specifi-
cation of the operational semantics of the languages in section three. Typically, an agent is char-
acterized as tuple of attributes and a set of functions that transform that tuple. Similarly, a whole
system is also characterized as a tuple (that includes its agents’ tuples) and a set of transformation
functions.

An important effect of F-M’s approach is that, even thought agents cause influences, these are not
always caused by what we would call agents: Objects in the environment may become producers of
influences, while having nothing else in common with agents.

The other important element in F-M’s approach is the way they capture the knowledge of how,
when and why the system evolves. F-M calllawsthe rules of transition towards a new environmental
state, given the current environmental state and the new set of influences just generated by all the
agents. Those influences have been generated by applying another type of rules:operators, to the
previous exhanced state.

In the work presented here, we are taking on F-M’s notions of influences and reactions and their
proposal to describe dynamical systems via that exhanced state. However, we drop the use ofopera-
torsand modify and extend their theory so thatlawscan be used as influence generators, among other
uses. With this movement, we also establish the base for an operational semantics for our simulation
language, as discussed in section three.

3 A hierarchy of agent architectures.

To illustrate the expressive power ofinfluences, F-M adapt a classical work on agent technology to
their theory. This work is Genesereth and Nilsson’s hierarchy of agent’s architectures [GN88]. In that

work, Generesereth and Nilsson (hereafter G-N) offered a description of a hierarchy of agent archi-
tectures ranging from a non-rational, purely reactiveTROPISTICagent to a rational,DELIBERATIVE
agent, viaHYSTERECTICSagents which are the first type of agent (in the hierarchy) with a kind of
internal, “mental” state. Each type of agent is, again, modelled as a tuple which includes a number
of transforming functions. The whole hierarchy from G-N, exhanced with F-M’s operators and our
REACTIVE-RATIONALagent is displayed in figure 1.

Agent type Main feature
REACTIVE-RATIONALIteratively senses, records, reasons and changes the environment
DELIBERATIVE Senses, records, reasons and changes the environment
HYSTERECTICS Senses, records and changes the environment
TROPISTIC Senses and changes de environment
OPERATORS Changes the environment

Fig. 1.A hierarchy of agent architectures

F-M use this hierarchy to define a corresponding hierarchy of multi-agent systems in which the
agents of each type are embedded in an environment. Notice that to be faithfull to their own theory
F-M should have added OPERATORs as the lowest level in G-N’s hierarchy. As we explained above,
OPERATORs (and in our case LAWS, as we explain below) also produceinfluencesand these should
be regarded as the marks of agency, because they represent what each agent tries to do.

In this paper, we will concentrate on describing just one type of agent:REACTIVE-RATIONAL
agent. We add this one to the hierarchy with the intention of combining the best of all the other agent
classes (namely, reactivity and rationality). We also hope that, by describing this agent, we will convey
the fundamental notions behind this style of agent specification and multi-agent system specification.

3.1 Three views on perception

To explain an agent model, we need first to clarify the notions of perception and internal state
proposed by G-N and the changes introduced by F-M. To model the notion of perception, G-N
use a functionPerceptiona: Σ → Pa, which maps the set of posible states of the environment
(Σ) to a set of percepts (Pa) for each agenta. In G-N, Pa is a partition ofΣ. For instance, if
Σ = {(on, hot), (on, cold), (off, hot), (off, cold)}, they could havePa = {on, off} meaning that
agenta can only distinguish two different states of the environment through two corresponding per-
cepts. Interestingly, F-M comment that this “realistic point of view” supposes that the agents are
directly concerned with the whole state of the environment. However, one can see above that the
agent has no access to certain properties of the world and, therefore, it cannot be concerned with
them. Moreover, it could well bePa = {on} above, in whose case the agent cannot even perceive a
“partition” of Σ, but just a portion of it.

None the less, F-M adopt a different perception function from that of G-N,Perceptiona: Γ → Pa,
which maps the set of all the possibleinfluencesto the perceptors. F-M claim that, by doing this, they
preserve the separation between “influences and reactions” and produce a model which “includes
automatically the locality of perception”: “Agent perceive what influences them and are not influenced
by the whole state of the environment”. For this to be true, though, influences would have to annotate
somehow not “the source of the influence” (the agent that causes it) but its “destination” (including
the agents that are affected by that influence). F-M give no indication of the actual way of representing
those influences.

Our perception function has, as F-M’s, the formPerceptiona: Γ → Pa. However, we accompany
that function with a prescription of the representation to allow a agent to perceive what is inΣ.

This form is very convenient at the representational level because allows us to state that the agent
perceives both the static environment (modelled byΣ) and the dynamic component of the system
(modelled byΓ). For example, with theΣ above and withΓ = {turn on, turn off} , one could
havePa = {obs on, obs , off, turn on, turn off} , meaning that agenta can perceive the light on,
the light off and the actions of turning the light on and off. Thelaws (introduced below), let the
modeller linkΣ to the extended set of influences.

Another important change (w.r.t. F-M), which we expand below, it is that influences will not be
linked to one point in time only. This has effects on perception, as what the agents perceive can be
configured from the whole history of past influences.

Having defined the generic perceptive mechanism, we can now concentrate on the internal details
of an agent.

4 A reactive and rational agent.

At the top of the G-N’s agent hierarchy, shown above, one find deliberative, knowledge level and
hysteretics agents, described (approximately)1 as a 5-tuple:

< Pa, Sa, P erceptiona,Memorizationa, Decisiona > (1)

wherePa andPerceptiona are define as at the beginning of the previous section. The termSa rep-
resents the set of internal states of the agenta. And the functionsMemorizationa : Pa ⊗ Sa → Sa
andDecisiona : Sa → Γ specify: 1) how that agenta registers, in its memory, what it perceives
(therefore changing its internal state) and 2) how it decides, taking into account that memory, what
it will be trying to do (upon its environment) in its immediate future. It is worth noticing that the
main “elements” proposed for an agent description are: The perceptual mechanism, the memorization
mechanism and the reasoning engine.

F-M then take the agent so described and “places” it into the evolving dynamical system described
by mean of a tuple containing: An infinite recursive functionEvolution : Σ⊗Γ → τ which describes
how the system progresses through (infinite) time (the range of the function is a set of impossible
values denoted byτ) and a cycle functionCycle : Σ ⊗ Γ → Σ ⊗ Γ which describes how the whole
system changes from one dynamical state to the next one.Cycle, in turn, is defined by means of two
more functions:React, which generates the new static state (from the previous state, the previous set
of influences and the laws that we explain below) andExec, which generates a new set of influences
(from the whole dynamical state and operators, which we do not need to discuss further here). Finally,
agents also contribute to this new set of influences by means of a functionBehaviour, specific for
each agent and which characterizes its internal working and produces its influences. This collection
of tuples and functions constitute a whole multi-agent system description.

We should say at this point that we preserve almost all the previous structures (only operators are
deprecated). We, however, reorganized the basic structures and introduce a few new elements to helps
us combine the features ofrationality, those agent already have, with thereactivefeatures we want
them to have.

4.1 Our reactive and rational agent

We describe an agent as a 6-tuple:

< Pa, Ka,Ga, P erceptiona, Updatea, P lanninga > (2)

1 This is for hysteretic agent, but the points are equally illustrated.

wherePa andPerceptiona are defined as at the end of section 3.1. The setKa andGa roughly
correspond toSa above. We want to state that a rational agent has a knowledge base,Ka, and a set
of goals (or intentions),Ga, that, together, characterize its internal state.Updatea : = ⊗ Pa ⊗Ka →
Ka takes the place ofMemorizationa in the memorization mechanism but it now has to ensure
that the addition of new information preserves the internal structure of the knowledge base (and its
consistency) becauseKa is a collection of logical formulae with a well-defined syntax and semantics.
Similarly,Planninga : =⊗<⊗Ka⊗Ga→ Ga⊗Γ , substitutes the functionDecisiona and, instead
of just producing influences from the internal state, the new reasoning function derives new goals and
influences, taking into account the previous goals and the knowledge base. Notice that bothUpdatea
andPlanninga introduce an argument (with domain=, the set of all the possible time points) to
indicate the time at which each process (updating and planning) takes place. The introduction of time
is another major change in our proposal with respect to F-M (and G-N).

With Planninga,we want to model the process by means of which an agent derives, from a set of
high level goals, a set of lower level goals, some of which are actions that can be tried for execution.
This view of an agent reducing goals to subgoals has been studied in [KS96] and [Dáv97] in the
context of agents in logic programming. We are using this logical model of an agent as the base of
our proposal. This model also specifies a way to deal with the problem of bounded rationality, a key
element of our proposal to build a reactive agent.

4.2 An agent with bounded rationality.

Bounded rationality refers to the fact that an agent has limited resources, typically time o memory
space, to reason. The concept was used by Simon [Sim] as part of an attempt to model people as
agents in an economy. He said that the perfect rational man, proposed by traditional economic models,
does not represent the behaviour of real human beings because these do not reason and act that way.
Human beings are influenced by a number of other variables, such a timing, and normally do not
display the mathematically perfect behaviour of those models.

There have been several, recent attempts to model an agent with bounded rationality [HMP92].
Our own proposal is part of the model of an agent presented in [Dáv97]. It basically says that an agent
must interleave reasoning and acting, so there must exist time (or space) bounds for the reasoning
and, then, it may be that the agent acts with no-completely-refined reasons. Should it has more time
to reason, the agent might take another course of actions. The key idea is that this kind of agent will
be ready to(re)actsooner than an agent that tries to complete its reasoning process. The price to pay
is that our “reactive” agent may not always take the “best” course of action.

Formally, we translate that limit into a restriction to the time the agent allocate to reasoning. Once
it reaches that limit, it must switch its “locus of control” and try whatever action it had decided (if
any) after that “truncated”, reasoning process. The reader may have notice that the second argument
of the planning functionPlanninga : = ⊗ < ⊗ Ka ⊗ Ga → Ga ⊗ Γ , is a real number(<): the
time allocate to the planning (reasoning) process. In the first approximation, however, that number
is an integer and it counts the number of “step of reasoning” accomplished during the last slice of
time conceded to reasoning. This extension, together with the structure of the function that describe
the behaviour of the agent (described immediately below) is our first proposal to model agents with
bounded rationality.

4.3 The behaviour of an agent as a mathematical function.

Following F-M, we characterize an agenta as a mathematical functionBehavioura : =⊗<⊗Ka⊗
Ga⊗Γ → Ka⊗Ga⊗Γ that maps the resource limits, the agent internal state and the set of influences
to a new internal state and a set of influences produced by this agent. Unlike, F-M, of course, our agent
internal state contains a knowledge base and a set of goals, as we described above.

This functionBehavioura is defined as follows:

Behavioura(t, ra, k, g, γ) =< k′, g′, γ′ > (3)

where
k′ = Updatea(t, Perceptiona(γ), k) (4)

< γ′, g′ >= Planninga(t, ra, k
′, g) (5)

TheUpdatea function will simply add the set of percepts observed by agenta into its knowledge
base. In particular,obs(P, t) could stand for the fact that the agent observed the propertyP at timet.

ThePlanninga function is more complicated. It specifies an inference engine which transforms
goalsg into goalsg′ and influencesγ′ , using the rules and factual information ink′ , starting at timet
and taking no more thanra units of time to do it. In [D́av97], we describe, in details, a logic program
(thedemopredicate) which could be seen as an implementation of this function. We give some further
comments on the structure of that solution in the following sections.

5 A multi-agent rational system: a specification for a simulation language.

Up until now, we have been describing one agent. To specify the behaviour of a multi-agent system,
we need to define the functions that account for the evolution of the whole system dynamics. Let us,
therefore, defineEvolution : =⊗Σ⊗Γ → τ andCycle : =⊗Σ⊗Γ → =⊗Σ⊗Γ , the same kind
of functions introduced by F-M (see above), but each with a new argument to represent time:

Evolution(t, σ, γ) = Evolution(Cycle(t, σ, γ)) (6)

where
Cycle(t, σ, γ) =< t′, σ′, γ′ > (7)

where, in turn,

< σ′, γ′ >= React(Sequence, Sequence, scan, σ, γ, t) (8)

Sequence = Select(Network, ξ) (9)

ξ = NextEvent(γ) (10)

t′ = TimeOf(ξ) (11)

In what follows, we explain what theReact, Select andNextEvent functions are.

5.1 A (new) React function (Laws as influence generators).

The key function in this description isReact. In F-M, React is the overall transition function that
describe how the environment changes, according to its current state, the current set of influences
and certainlaws of change. Theselawsare, precisely, a set ofdomain specific rulesthat the modeller
introduces in a model of a certain system in order to specify the conditions and mechanism the change
that system.

In our proposal,React is, again, the transition function that processes thelaws of change. This
time, however, we allow theReact function to generate, not just the new static state, but a new set
of influences, i.e. the whole system dynamics. What we are doing is combining the functionReact
andExec, from F-M’s proposal, into one and dispensing with their notion ofOperators. Our laws
capture the function of both laws and operator in F-M’s design, without any lost of generality and with
some advantage, as we explain below. So, now laws are, as operators in F-M,influence generators.

DefiningLaws as the set of all the possible laws of change, we haveReact : (Laws ∪ {; }) ⊗
(Laws ∪ {; })⊗ {scan,noscan} ⊗B ⊗=⊗Σ ⊗ Γ → Σ ⊗ Γ , defined as follows:

React(ε, Laws,noscan, β, t, σ, γ) =< σ, γ > (12)

and
React(ε, Laws, scan, β, t, σ, γ) = React(Laws, Laws,noscan, β, t, σ, γ) (13)

whereε is an empty sequence of laws andscanandnoscanare flags’ values and

React((λ;R), Laws, F lag, β, t, σ, γ) =< σ′′, γ′′ > (14)

where

< σ′, γ′ >=





Reduce(name, Toreduce, β, t, σ, γ)
if

λ =< name, preconds, preinfluences, Toreduce >
and

preconds(σ)
and

preinfluences(γ)


or

< σ, γ > otherwise



(15)

and

Flag′ =
{

scan if preconds(σ) or preinfluences(γ)
Flag otherwise

(16)

and
< σ′′, γ′′ >= React(R,Laws, F lag′, β, t, refresh(σ, σ′), γ ∪ γ′) (17)

Reactis the instantaneous reaction of the environment. We could add delays but, observe, that in
simulation, belated effects may be introduced by posting new events in the future event list (FEL).

λ is a law, a set of instructions, to produce a certain set of state variables and influences, given that
certain preconditions for those states and influences hold (preconds() and (preinfluences()).

Our contribution isToreduce, a fragment of code that can be reduced to a set of atomic actions that
transform the systems state. This reductive strategy is very similar to the reduction of logic clauses to
constraints and abductive atoms as in abductive logic programming [KS96]. This reductive strategy
may also allow for the specification of the operational semantics of the language used to write the
instructions inToreduce, as we have done in [D́av99].

5.2 The whole description of MARS and its relationship to GLIDER.

On that brief description of an reactive and rational agent and theReact function, we can built the
mathematical description of a system populated by many of such agents. The only extra devices we
need are theset of all the possible mental states of all the agents(S) and a new definition of the
functionCycle : S ⊗=⊗Σ ⊗ Γ → S ⊗=⊗Σ ⊗ Γ :

Cycle(< s1, s2, · · · , sn >, t, σ, γ) =<< s′1, s
′
2, · · · , s′n >, t′, σ′, γ′ > (18)

where

< σ′, γ′ >= React(Laws, Laws, scan, BackgroundKnowledge, t, σ, γ ∪i γi) (19)

and
< s′i, γi >= Behavioura(t, ra, k, g, γ) =< k′, g′, γ′ > (20)

where, in turn,s′i is an abbreviation of< k′i, g
′
i >, the knowledge base and goals of agenti, and, as

before,

Laws = Select(Network, ξ) (21)

ξ = NextEvent(γ) (22)

t′ = TimeOf(ξ) (23)

5.3 GALATEA’s nodes and the laws: the elevator example.

Probably the best way to introduce the semantics of the new extended GLIDER language is through
a simple example. What follows is the basic layout of a GALATEA simulation model. Unfortunately,
there is not enough space to show it at length. It models a system with a building that has an elevator
(represented by the elevator node) that carries people up and down, the doors of the elevator at each
floor (e.g. DoorAtOne) and the floors themselves (e.g. FloorOne), where people stays for a while.
There is also a node representing the entrance (i.e. Entrance) to the building, that “receives” people
with a frequency modelled by a statistical law (exponential, with rate indicated by intArrivalTime).
An finally, there is also a node representing the exit (i.e. Exit). People in the building are represented
by messagestraveling around the nodes.

As it is common in system simulation, this NETWORK describes the system and each node
describes “what happens” to the entities (messages between nodes). In our context,each noderoughly
corresponds toa law of the system.

NETWORK
// A building’s layout

Entrance (I) :: IT = EXPO(intArrivalTime);

FloorOne (R) :: STAY = 10;
NextFloor = UNIFI(1,4);
if Nextfloor = 4 then SENTO(Exit);

DoorAtOne (G) :: if WhereElevator = 1 & DoorOpen then SENTO(Elevator);

FloorTwo (R) :: STAY = 5 ;
Nextfloor = UNIFI(1,3);

DoorAtTwo (G) :: if WhereElevator = 2 & DoorOpen then SENTO(Elevator);

Elevator (R) ::

Exit (E) ::

AGENTS
// Each agent is specified here

ElevatorController (AGENT) static ::
GOALS

(if atFloor(M) at T and
on(N) at T then (

if N = M then (open ; turnoff ; close starting at T)
and if N < M then (down starting at T)
and if M > N then (up starting at T))

and (if true then watchfloors at any T)
and (if true then watchbottons at any T)

INTERFACE
// these are the instructions to explain the effects of actions on the
// environment.

INIT
// Inicialization activities.
ACT(Entrance, 0) ;

DECL
VAR float intArrivalTime, int nextFloor, int WhereElevator;
MESSAGES Entrance(int whereAmI, int nextFloor);

END.

The NETWORK section of the code above refers to the set of laws governing this system. As in
GLIDER, each entrance in the network section represents a node: a subsystem of the whole system
being modelled. In GALATEA, following F-M’s theory, these nodes corresponds tolaws that state
how the system changes. Thus, the behaviour of the system depends on thescanningof such a network
for each event’s occurrence, as shown in the mathematical specification in the previous section.

The following section, AGENTS, describe the goals and knowledge base for each type of agent.
The languages used for these descriptions arelogic programming languages, which provides for
greater expressiveness and are more human friendly than other computer languages. This is particu-
larly useful when one is specifying an agent behaviour. The formal description of those languages can
be found in [D́av97].

The remaining sections (INTERFACE, DECL, INIT) providebackground knowledgeof the sys-
tem. The INTERFACE is the code that describes the actual effects of each agent’s actions on the
system dynamics (not shown for lack of space).The section DECL declares the global variable (VAR)
and the structure of the messages (MESS), generated at I nodes, that travel around the NETWORK.
And the section INIT provides for the initialization of variables and the starting event in a simulation
(ACT(Node, Time)). This is the normal layout of a simulation model (in GLIDER) now enriched with
a logic-based description for each agent.

5.4 GALATEA at work.

Operationally, the system will interpret all the entries in a GALATEA code as a program (plan) to
guide a simulation. Declaratively, one could say that the system hasNetwork = [Entrance (I)
:: IT := EXPO(intArrivalTime) ; FloorOne (R) :: STAY := 10 ; · · ·], as the
input to theSelect function shown above. This function simply reorders this “list” so that it starts with
the node that it is being activated. At the beginning of the simulation, the first activation instruction
saysACT(Entrance, 0) , so thatNetwork = Laws at that initial time, in this example.

TheReact function will thenreducetheLaws to a set of instructions to change the static compo-
nent of the system (σ) and to schedulefuture events (these are added toλ). For instance, the initial
Laws in our example will produce something like:

λ′′ = [do (simulator, set(IT = EXPO(intArrivalTime), t0),

do(simulator, ACT(Entrance, now + IT), t0 + 1),

do(simulator, ACT(FloorOne, now + 10), t0 + 2), · · ·] (24)

This new set of influences says that: at timet0 , the simulator sets the variableIT to a value gen-
erated by the statistical function EXPO; then, at timet0+1 , the simulator schedule the activation of
the nodeEntrance to occurs at a time equal to the current time,t0+1 (conveniently represented by
the special term “now”) plus the value of the variableIT ; then the simulator schedules the activation
of the nodeFloorOne in a similar fashion, and so on.

Thus, one ends with a declarative account of the simulator activities as it simulates the evolution
of a system through time. We believe that this approach may formally convey meaning to a simulation
language, like GALATEA, in the same way a similar mapping from imperative to logical descriptions
provides the semantical specification of a procedural language (see [Dáv99]).

Moreover, this approach supports the integration of the simulator, which controls the evolution of
the environment dynamics, with the agents. We will need more space to show this, but we are aiming
at something like:

λ′′ = [do(simulator, set(IT = EXPO(intArrivalTime)), t0),

do(simulator, ACT(Entrance, now + IT), t0 + 1),

do(simulator, ACT(FloorOne, now + 10), t0 + 2),

do(ElevatorController, up, t0 + 3), · · ·] (25)

which accounts not just for the simulator behaviour but for the agents’intentions (theEleva-
torController intends to move the elevatorup a floor at timet0+3).

6 Conclusions and further work.

In this paper, we have introduced a mathematical theory that state what multi-agent systems are and
how they evolve through time. It is intended to provide the formal specification to guide the implemen-
tation of a multi-agent simulation platform that we have called GALATEA. This is a multi-language
platform: we use an extension to a mature simulation language (GLIDER) to describe “the world” in
with the agents are embedded (the NETWORK section in the example above). But, we also use a set
of logic programming languages to specify each agent goals and beliefs (the AGENTS section).

Thus, GALATEA is a multi-agent platform with a family of language to describe systems and
their agents. In forthcoming work, we intend to produce both, a formal and detailed description of all
those languages (syntax and semantics) and the architecture of the simulation platform.

7 Acknowledgment.

We are very grateful to Mayerlin Uzcátegui, Carlos Domingo and Martha Sananes for many useful
discussion.

References

[Dáv97] Jacinto D́avila. Agents in Logic Programming. PhD thesis, Imperial College, London, May 1997.
[Dáv99] Jacinto D́avila. Openlog: A logic programming language based on abduction. InProceedings of PPDP’99, Paris, 1999.
[DGS96] Carlos Domingo, Tonella Giorgio, and Martha Sananes.GLIDER Reference Manual. Mérida, Venezuela, 1 edition, August

1996. CESIMO IT-9608.
[FM96] Jacques Ferber and Jean-Pierre Mller. Influences and reaction: a model of situated multiagent systems. InICMAS-96, 1996.
[GN88] Michael R. Genesereth and Nils Nilsson.Logical foundations of Artificial Intelligence. Morgan Kauffman Pub., California.

USA, 1988.
[HMP92] Zhisheng Huang, Michael Masuch, and L. Pólos. Alx, an action logic for agents with bounded rationality. Ccsom report

92-70, University of Amsterdam (PSCW), 1992.
[KS96] Robert Kowalski and Fariba Sadri. Towards a unified agent architecture that combines rationality with reactivity. In Dino

Pedreschi and Carlos Zaniolo, editors,LID’96. Logic In Databases. Informal Proceedings International Workshop on Logic
in Databases, San Miniato, Italy, July 1996. (Also at http://www-lp.doc.ic.ac.uk/UserPages/staff/rak.html).

[Sim] Herbert A. Simon. A behavioral model of rational choice.Quarterly Journal of Economics, pages 99–118.
[Zei76] Bernard P. Zeigler.Theory of modelling and simulation. Wiley-Interscience, New York, 1976.

