
Full-wave modeling of multilayer superconducting microstrip lines sensitivities

A. Mayouf and F. Djahli

Department of Electronics, Faculty of Engineering, Sétif University, Algeria.

Email: a.mayouf@caramail.com

Abstract

This paper studies the sensitivities of superconductor microstrip line on multilayer substrate and

superstrate using a new theoretical model. This model carefully considers the effects of

superconductivity, the strip thickness and losses on circuit performances. The multilayer

superconducting microstrip line has been considered as one directional bianistropic medium. Therefore,

new integral equation for the electrical field is formulated, in the spectral domain, using the exact dyadic

Green’s function of a bianisotropic planar media. In order to calculate the geometrical microstrip

sensitivities, we have used the finite difference method to obtain the total geometrical derivative of the

electrical field integral equation. We have used the two-dimensional Galerkin’s technique to solve the

set of resulting integral equations. The computations of multilayer superconductor microstrip line are

compared to those provided by the quasi-static and full wave approaches. However, our results of the

geometrical sensitivities of the microstrip characteristics are compared only with quasi-static results,

because there is no approaches in the literature developing such calculations.

Key words: Modeling, Superconductivity, Sensitivity, Galerkin’s technique, Green’s function,

Multilayered microstrip.

1. Introduction

Considerable research has been devoted to the full-wave analysis of planar microstrip structures

as can be seen from the numerous publications on this topic [1]. In order to develop some special

microwave devices, the designers of new multilayer circuit boards use several techniques for

improve the adhesion between the substrates and ground plane with temperature variation. One of

these techniques, that based on the perforations in the ground plane [2]. A second technique uses

ground planes fabricated by laying one layer of metallic wires over the substrate followed by an

other layer of wires perpendicular to the first layer [2]. Hence, such ground plane, substrate and

superstrate can be treated as three stacking layers of anisotropic media. An other approach uses the

high-temperature superconductors characterized by their low surface resistance and frequency-

independent penetration dept.



Such a rigorous analysis is very often based on an integral equation formulation, typically

solved with the method of moments [1-9]. Some of these analyses incorporate the effect of

superconducting into the electrical field integral equation formulation basing on the electrical

surface current density on the electrical field [3].

In this paper, we have developed an original theoretical model to analyze the sensitivities of the

propagation characteristics of superconducting microstrip line on lossy multilayer dielectric

substrate. In this model, based on the exact dyadic Green’s function of bianisotropic media [5-7],

we formulate a set of integral equations in the spectral domain. We have applied a two-dimensional

Galerkin’s technique, to solve this last for the effective propagation constant and its derivative with

respect to the geometrical parameter. In addition, we have extracted the effective permittivity and

the characteristic impedance of the microstrip line and their geometrical derivative.

2. Theory

Consider the multilayer superconducting microstrip line shown in figure1. The substrate and

superstrate consist of an arbitrary number of layers, stacked in the z-direction. The layers extend to

infinity in x- and y-directions. The thickness of the metallization of the superconductor is

considered. Then, the surface current is assumed to flow only in x-, and y-directions in the strip.

Fig. 1. Geometry of multilayer superconducting microstrip line.

2.1. Microstrip modeling

Using the Maxwell’s formulation and applying the three-dimensional dyadic Green’s

function of a planar bianisotropic media, to the multilayer microstrip, yield the electrical field

element integral equation given by [1-14]:
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where )r(J 0

rr
is the three-dimensional current density, and )r/r(G 0

rr
is the three-dimensional dyadic

Green’s function expressed as [5]:
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The adoption of the dyadic Green’s function of a bianisotropic medium, for characterizing the

superconducting microstrip structures of multilayered substrate and superstrate, necessitates the

development of new permittivity and permeability functions in space domain as:
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where n is the number of substrate layers, ns is the number of superstrate layers and m is the number

of lamina composite ground plane. We define the functions Pτ(x) and sgn(x) as follows:
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The magnetic anisotropy of microstrip dielectrics is presented here by a permeability function

similar to that of the permittivity previously described.

We note here that our assumption of the multilayered microstrip line as a bianisotropic planar

medium requires, to characterize it, an infinitely long bianisotropic microstrip line of width W, with

a longitudinal distribution current of the form:

xjkse)x(f = (3)

The analytical integration of electrical field integral equation with respect to x, gives the

complex propagation constant ks. The superconducting strip and ground plane are characterized

by their thicknesses and complex conductivity using the two-fluid conductivity model (London

model) [3]:
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where σn is the normal state conductivity at the closest value of temperature greater than the

critical temperature Tc, λL is the penetration depth of the magnetic field in the superconductor

called London length expressed as follows:
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with λ0 is the penetration depth at T=0K.

The supposition that the strip conductor is not perfect (σ≠∞) necessitates the addition of and

additional term in the electrical field integral equation for all the points in the strip. This term

presents the losses in the linear approach.

Imposing the boundary condition along the strip width by integrating along y and z for all point

in the longitudinal direction on the strip (x-direction), the electrical field element may be expressed

as follows:
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In this study, we expend the current density as:
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and the υ-dependent basis for the current density gi(υ) is chosen as a piecewise sinusoidal function

given in [7,8]. Np is the number of piecewise sinusoidal modes.

By weighting both sides of the integral equation (6) by an arbitrary vector function z)(y,w
r

and

then integrating over y and z, one can get a homogeneous integral equation given by:
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By using the spectral domain formulation of the dyadic Green’s function defined in [5] and

applying the Galerkin’s procedure, where the bases of z)(y,w
r

are the same as those of )z,(yJ 00s

r
, we

can integrate analytically with respect to z- and kz-dependents. Then, we obtain the following

characteristic matrix equation [10]:
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2.2. Sensitivity study

There are two methods for carrying out sensitivity analysis of a structure. The first one is the

finite difference method. The second method is the adjoint network approach [1]. In addition to

these two techniques, a direct method can be used if the structure performance parameters are

expressed directly in terms of component parameters. We have used, in this work, the first

approach.

To obtain the geometrical sensitivity of the microstrip line with respect to an arbitrary

geometrical parameter ξ, it is necessary to extract a new integral equation of the electrical field for ξ.

This integral equation is obtained by applying the definition of the total derivative, to the integral

equation expressed by (1). Then,
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The integral equation of the electrical field given by the equation (1) can be expressed as

follows [10]:
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Basing on the fact that )r/r(G)r/r(G 000

rrrrrr
∇−=∇ , we can express the total derivative of the

electrical field integral equation as follows:
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Applying the condition to the limit near the strip for the electrical field gives:
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Note that the y-dependence and z-dependence of the total geometrical derivative of the current

density )d/Jd( ξ
r

 are expended over the same basis functions of the current density given by (7). We

can write then:

k)z(g)y(gIj)z(g)y(gI
d

)z,y(Jd pp N

1i
iiiz

N

1i
iiiy

s
rr

r

∑∑
==

′+′=
ξ

(14)

After substitution, testing it with the same test functions z)(y,w
r

and integrating over x, y and z,

we obtain:
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Substituting (16) and (17) in (15) gives a system of linear equations:
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The use of the obtained results, concerning Ii and ks, by solving the homogenous matrix

equation (9), allows the resolution of the system of linear equations (18). Hence, we found the

geometrical derivative of the propagation constant. Therefrom, we can extract the sensitivity of the

microstrip line with respect to its geometrical parameters by applying the definition of the

sensitivity given by [11]: ( )ξ∂∂−=ξ∂β∂ /kReal)/( s .



3. Results

First, we calculate the effective dielectric constant, as shown in figure 2, for a microstrip

line of GaAs substrate of εr1=12.6, h1=0.1mm, and an isotropic dielectric superstrate of

εrs1=1.0, and W=0.07mm for strip thickness t0=0.3µm, versus frequency at T=77K.

Fig. 2. Effective permittivity for microstrip line, of εr1= 12.6 substrate, h1=0.1mm,

t1=12µm, t0=0.3µm and W=0.07mm, versus frequency at T=77K.

The obtained results are in good agreement with those obtained by the quasi-static approach

[11] for frequencies less than 10 GHz. Beyond this frequency, the two approaches diverge slowly.

However, the results of S. Mao & al. [3] are very close to our calculations. In addition, the MSDA

results are greater than our results for frequencies less then 10GHz. Beyond this frequency, the

MDSA results become less than ours do. We can note that the effective propagation constant

decreases as strip thickness increases.

The attenuation constant for the same superconducting microstrip line of figure 2 has been

calculated and plotted in figure 3. Our results are in good agreement with those of Mao & al.[3]

when the maximum difference between the two approaches is 3dB. This distortion is essentially due

to the influence of the superconductor nonlinearity, which has not been considered in the approach

of Mao &al. [3].
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Fig. 3. Attenuation constant for microstrip line, on an εr1= 12.6 substrate, h1=0.1mm,

t1=12µm, t0=0.3µm and W=0.07mm, versus frequency at T=77K.

Finally, we calculate the effective permittivity sensitivity as function of the

superconductor thickness, as shown in figure 4, for a microstrip line of GaAs substrate of

εr1=12.6, h1=0.1mm, and strip of W=0.07mm at T=77K and frequency f=10GHz.

Fig. 4. Effective permittivity of superconducting microstrip of εr1= 12.6, h1=0.1mm,

t1=12µm, t0=0.3µm and W=0.07mm, versus Temperature at f=7GHz.
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Our results show the highest sensitivity of the microstrip line to the thickness values close

to the London depth. For thicknesses less than this depth as well as those superior to λL and

inferior to 2λL, the microstrip line becomes less sensible. For thicknesses greater than 2λL, the

microstrip line becomes insensitive.

4. Conclusion

We have developed a new full-wave theoretical model for study the geometrical sensitivities of

the multilayer superconducting microstrip lines including the effects of superconductor

nonlinearity. In this model, we have used the exact Green’s function, of a bianisotropic medium

adapted to a multilayered microstrip line, and the two-dimensional Galerkin’s method. We have

calculated the effective propagation constant and the attenuation constant versus frequency as well

as the effective permittivity sensitivity as function to the microstrip thickness. The accuracy of our

results has been checked with a good agreement with the different approaches.

References

[1] Ureel, J., and De Zutter, D., New method for obtaining the shape sensitivities of planar

microstrip structures by full-wave analysis. IEEE Trans. Microwave Theory and Techniques,

Vol. 44, No. 2, pp. 731-737, 1996.

[2] Kiang, J. F., Propagation and coupling characteristics of microstrip lines with laminated

ground plane. IEEE Trans. Microwave Theory and Techniques, Vol. 44, No. 2, pp. 208-217,

1996.

[3] Mao, S. G., Ke, J. Y., and Chen, C. H., Propagation characteristics of superconducting

microstrip lines. IEEE Trans. Microwave Theory and Techniques, Vol. 44, No. 1, pp. 33-40,

1996.

[4] Nghiem, D., Williams, J. T., and Jackson, D. R., A general analysis of propagation along

multiple-layer superconducting stripline and microstrip lines. IEEE Trans. Microwave Theory

and Techniques, Vol. 39, No. 9, pp. 1553-1565, 1991.

[5] Hanson, G. W., Numerical formulation of dyadic Green’s functions for planar bianisotropic

media with application to printed transmission lines. IEEE Trans. Microwave Theory and

Techniques, Vol. 44, No. 1, pp. 144-151, 1996.

[6] Vendik, O. G., Vendik, I. B., and Samoilova, T. B., Nonlinearity of superconducting

transmission line and microstrip resonator. IEEE Trans. Microwave Theory and Techniques,

Vol. 45, No. 2, pp. 173-178, 1997.



[7] Mayouf, A., Analyse des Discontinuités Gap et Circuit Ouvert de la Ligne à Microruban par

l’Approche Dynamique Basée sur les Fonctions Exactes de Green et la Méthode de Galerkin

Améliorée. Master dissertation, Univ. of Sétif, Algeria, 1998.

[8] Djahli, F., Mayouf, A., and Dekik, M., Modeling of microstrip open end and gap

discontinuities by an ameliorated moments method. Int. Journal of Electronics, Vol. 86, No. 2,

pp. 245-254, 1999.

[9] Harokopus W. P. and Katehi, P. B., Characterization of microstrip discontinuities on multilayer

dielectric substrates including radiation losses. IEEE Trans. Microwave Theory and Techniques,

Vol. 37, No. 12, pp. 2058-2066, 1989.

[10] Mayouf, A., and Djahli, F., Full-wave modeling of microstrip line and its sensitivities on lossy

multilayer dielectric substrate and superstrate with laminated ground plane. Int. Journal of

Microwave and Millimeter-wave Computer aided Engineering, to be published.

[11] Gupta, K. C., Garg, R., and Bahl, I., Computer-Aided Design of Microwave Circuits, MA :

Artech House, Dedham, 1979.

[12] Polycarpou, A. C., Lyons, M. R., and Balanis, C. A., Finite element analysis of MMIC

waveguide structures with Anisotropic structures. IEEE Trans. Microwave Theory and

Techniques, Vol. 44, No. 10, pp. 1650-1663, 1996.

[13] H. Oraizi, Design of impedance transformers by the method of least squares. IEEE Trans.

Microwave Theory and Techniques, Vol. 44, No. 3, pp. 389-399, 1996.

[14] P. Berini and K. Wu, Modeling lossy anisotropic dielectric waveguides with the method of

lines. IEEE Trans. Microwave Theory and Techniques, Vol. 44, No. 5, pp. 749-759, 1996.


