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Abstract
The simulation of the response of device used in Integrated optics at a given  excitation needs numerical

methods. These methods must be  precise and economical from memory size and time points of view .
According to these criteria, we have developed a software based of Galerkin’s Method for determining the

modal characteristics of Inhomogeneous planar  and rectangular waveguides.
In this paper, the calculations results for effective indices and field distributions obtained with our software
(Galerkin’s method) are presented  and compared with other  methods.

1-Introduction

The conception and optimization of the components utilized in Integrated optics require the development
defined for isotropic medium by [1] :
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Where:

∇ 2 is the scalar laplacian if the fields is expressed in Cartesian systems.
k0  = 00µεω  =2π /λ 0 : is the free space wave number.

ε r = n2 denote the refractive index profile.

Over the years, several numerical methods have been developed to solve the wave equations. Among the
most popular techniques are :

1-The finite element and finite difference methods[2] ; the cross section is divided into simple polygons, where the
field is expressed in terms of polynomial functions over these polygons, and zero elsewhere. These methods can be
applied to a wide range of optical waveguide structures  but the principal inconvenient  is the appearance of spurious
modes.

2-Approached methods; these methods  are based on the separation of the variables (Marcatili and effective indices
methods) [3,4], these techniques  consists in the conversion for a two dimensional to a one dimensional problem.
However, these approaches are applied only for scalar resolution and some simple geometry’s.

3-The method that we have proposed is the Galerkin’s method, which is based on expanding the electromagnetic
field in Fourier series. It has been  applied to circular fibers than to slab waveguides. Generally, compared with other
methods, the development Fourie series is easy, rapid, and  doesn’t generate spurious mode.

2-Mathematical formulation

The Galerkin’s method is based on expanding the electromagnetic field in terms of an orthonormal set of
functions to convert victorial or scalar wave equations on matrixes equations on eigenvalues[5,6].

We consider a 3-D optical waveguide, where x and y are the transverse directions with refractive index
profile n(x,y), and z is the propagation direction. The vector wave equation (eq 1) is given as [1].
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A similar vector wave equation is obtained for magnetic field [5], for this reason only the electric vector wave
equation is considered in this paper and converted to a system of coupled equation :
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According the GALERKIN’s method , the  transverse electric components  are  expanded on a suitable series of
known functions { φ µ  , φη }.
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Where Nx and Ny are the  number of functions necessary for development .
The coefficient A µ   η  ,Bµ   η  are initially unknown.

The basis  functions orthonormality condition is defined by :
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ηµ η µηµµ η δ=φφ∫∫ .Where D is the definition domain of basis functions .

A simple and convenient complete orthonormal set consists of sine functions
If  we expand the unknown field as sine functions, it is necessary to enclose the transverse dimensions of wave
guide in a sufficiently large domain to ensure that the electromagnetic field is negligible at the boundary. We take :
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Within 0≤  x ≤ Lx and 0≤  y ≤ Ly

-By replaced the fields Ex and Ey in system (eq3) by their series expansions (eq4).
-Multiplication with basis functions and integration ; we obtained the system of coupled equations :
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With the matrix elements :
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 M,S are a matrixes corresponding to the scalar wave equation, and N and R represent the coupling terms
These  equations can be written in conventional matrix form by defining a vector X consisting of elements A µ   η ,Bµ  η
 And by also defining a matrix C composed of the coefficients Mµ   η  , Nµ   η  , Rµ   η , Sµ   η  .
The equation systems can now be written in form of eigenvector X and eigenvalue (neff=β /k0)2 ;
( neff : is the effectif index)                 C.X = neff 

2 X ;

3-Results et discussions :

 planar waveguide
In the first part we are applied ours software for study the guiding modes in inhomogeneous planar wave guide :

    

we considered asymmetric graded-index guides with refractive index profile n(x) of the form :

n2(x) = [ ns +∆ f(x) ]2 x ≥  0
        =   nc

2 x < 0

Where :
nc :refractive index of superstrate =1.00 (Air )
ns : refractive index of substrate =2.177.
∆ : measure of increase in the refractive index, which provides waveguiding action =0.09837
f(x) : the profile shape function, to compared ours results, we presented here the exponential profile:

f(x)= a
x

e
−

 (a : breaking factor of the function).
 a=2.22726µ m ,λ0 =0.6328µ m.

Exact WKB Galerkin

    0 2.24267 2.24289 2.24264

    1 2.22153 2.22159 2.22150

    2 2.20735 2.20738 2.20732

    3 2.19714 2.19715 2.19651

    4 2.18967 2.18968 2.18519

              Table(1)
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Figure (1) waveguide with refractive  index n(x)

Figure(2): Plot of  modal field for m=0  versus
distance at the enclosed domain

L x=5µ m,  -1µ m <x<4µ m
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This table (table 1) exposed the propagated modes to planar guide with comparison of finite element (exact)
[6,7], WKB[3,7], and Galerkin mode spectra neff calculated for  Nx=50 and Lx=5µ m.

Generally speaking, Galerkin’s method gives more accurate results than the WKB. On the other hand, the
effective index of higher-order are in considerable error. That explain one-self of fact the artificial  width Lx=5µ m is
not sufficient to let passed the higher-order modes, for reamed we are widened the domain of n(x) variation.

The field of lowest order mode ψ 0(x) in the case Lx=5µ m (figure(2) is indistinguishable from exact
solution [7]

Micro wave guide

  

 

  Figure (3) :the structure of rectangular
             Waveguide

we define  the normalized propagation constant B with :
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We are calculated the normalized propagation constant of fundamentally mode for square wave guide with

normalized frequency  from victories solutions using 20x20 basis functions figure 4 .Their are a good accord with

results obtained with finite elements method [Goell 69].

The accuracy  and validity of the standard scalar approximation are further examined for the fundamental

mode in a square step-index waveguide, as shown in figure 5 :
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Figure5: the Values of B(V)for fundamentally mode of square waveguide Vx=Vy =V

        High contrast: n1=2   n2 =1 ;                Low contrast: n1=1.01     n2 =1
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Figure 4: normalized propagation constant B of  fundamental mode

with normalized frequency  for square waveguide  (a/b=1), (n1-n2=0.5)
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For low contrast in refractive index the scalar approximation leads to accurate results over the entire V

range. In case of high contrasts, however , the scalar and vector solutions are significantly different for small V

numbers. As expected, the scalar approximation approaches the vector solution with increasing V number due to

more complete mode confinement.

The repartition of electromagnetic field as shown in figure6 illustrate the Confinement of guided mode in

the film.

4-Conclusion
In this present paper we have  made the Galerkin’s method applied for inhomogeneous waveguides. The

prediction of the modal field distribution  through the trigonometric function expansion supplied accuracy results
with a good choice of enclosed region Lx and Ly.
In all, cases however no spurious mode solutions in the range ns<neff<ns+∆  have been observed.

Therefore this method present the essential advantages without the others methods and in particular to the
finite element or effective index method.

 1-Generallity  and aptitude of the method to treat a  differences structures (victories,  inhomogeneous) [1,8].
 2-Simplicity in analyzing.
 3-No spurious mode.  

In the end, this method can be directly used for analyzing the propagation  from no uniform optics system’s
according the  propagation  direction.
In particular, association  the Galerkin method to characteristic matrix  permit to treat the periodic structures
presented a fort discontinuity of refraction index from the direction of propagation.
Since, we are able to say ,that we disposed the preferment implement for the conception of Itegrated optic
components
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Figure 6 :  Repartition of the field Ex (x, y)( Nfilm=1.605; Nsubstrat=1.515; a=b=3µ m, λ=0.6328µ m)




