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Abstract:  In this article, the extension of the Glivenko-Cantelli theorem to the resampling is
proved in its version of convergence in quadratic mean. The consequences for the development of
the statistical inference based on resampling is analyzed. The results are extended to the case of
the mixture of information of the sample with the sample of the sample.
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1. Introduction

The Glivenko-Cantelli theorem or central theorem of statistics is the one which
enables best to lay the foundation of statistics. The inferential base composed of a
probability space and a random sample has served to justify the foundation of classical
statistical inference based on the fact that the empirical sample distribution function
converges to the population distribution function (Glivenko-Cantelli theorem).

In the context of classical statistical inference, methodologies have been developed
which consider samples of the sample or randomization of the same with different
purposes. “Jackknife” was developed by Quenouille-Tukey in this way in order to reduce
the bias of an estimator.

Later, a modification of jackknife was developed by Efron who called it “bootstrap”,
with the purpose to estimate the distribution of a statistic or its standard error. See Efron
(1979).

The jackknife was borne with its basis already justified, but in the case of bootstrap it
was not the same. We will attempt here to justify the basis ...

1.1. Inferential base of the classical statistics and Glivenko-Cantelli theorem
Let X be the random variable with probability distribution function Fx(x;θ), induced
by X in the real line, according to a probability space (Ω ,A,P), that is,

(1.1)    X  ~  Fx(x; θ)  =  P[X < x ; θ]  =  FX(x)  =  F(x)   , θ ∈  Θ  ⊆  |R.
      Let Xn be a random sample of size n of X, that is,
(1.2) Xn  =  ( X1 , ... , Xi, ... , Xn)’  in which,
(1.3)    Xi   ~ind  F(xi)  for  i = 1,2, ... , n
     The inferential base of the classical statistics is constituted by a probability space and a
random sample, given by
(1.4) (Ω ,A,P),Xn

      Empirical sample distribution function.   Let the n-th empirical sample distribution
function of Xn  be denoted by Fn(x;Xn) and be defined for each real x by the random
variable
(1.5) Fn(x;Xn) = (1/n) Σi I(-∞ ,x](xi)
     The random variable n Fn(x;Xn) has a binomial distribution with parameters n and F(x),
for each real x, that is,
(1.6) n Fn(x;Xn) ∼   bin( . ; n, F(x) )
      The foundation of classical statistics is based on the Glivenko-Cantelli theorem and its
consequences.

      Glivenko-Cantelli theorem. For each real x the random variable Fn(x;Xn) converges
almost sure to F(x), which  we denote by
(1.7) Fn(x;Xn)  →  a.s.  F(x)  , as  n  →   ∞

1.2. Consequences of the Glivenko-Cantelli theorem.   Given  that  the  almost  sure
convergence implies the convergence in probability and this in turn the convergence in
distribution, from this it follows that Fn(x;Xn) converges to F(x) in probability and in
distribution. But, since the former types of convergence do not imply convergence in
quadratic mean, it becomes necessary to prove separately this type of convergence.
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    The Glivenko-Cantelli theorem assures us for large samples Fn(x;Xn) is close to F(x)
and therefore an unknown functional θ(F) may be estimated by an appropriate θ(Fn). The
meaning of the proximity is given by the significance and consequences of each type of
convergence.
     Finally, we may state that the knowledge of the distribution of probability of the
estimator θ(Fn)  makes possible to do the statistical inference.  There exists an extensive
theoretical  support to derive these distributions. The work in this direction has been
tedious and not always easy.
     So far we have mentioned only the classical statistical inference. Now in the sequel we
consider a new way to carry out the statistical inference.

2.- Statistical inference based on the random sampling of a random sample.

Let xn be an observed random sample of the random variable X given by (1.1). That is, let
Xn = xn ,  in which:

(2.1)   xn  =  (x1, ... , xi , ... , xn )’
Let X*

n,m  be a random sample of size m of the observed random sample xn , obtained by
assigning the probability (1/n) to each element of  xn .  That is,

(2.2) X*
n,m  = (X*

1, ... , X*
j , ... , X*

m )’  in which
(2.3) X*j   ∼ ind   Fn(x;xn) ,          j = 1,2, ... , m

The inferential base of the statistics based in the random sampling of a random sample is
composed of a probability space, a random sample of size n, Xn , which is the population random
sample, and a random sample of size m denoted by X*

n,m  which is obtained from the observed
random sample xn

(2.4) (Ω ,A,P),Xn,X*
n,m

           We denote the (n,m)-th  empirical sample distribution function of  X*
n,m by Fn,m(x;X*n,m),

which is defined for all real x by the following random variable
(2.5) Fn,m(x;X*

n,m) = (1/m) Σj I(-∞ ,x](X*
j)

           The random variable  m Fn,m(x;X*n,m) has a binomial distribution with parameters m and
Fn(x;xn) for each real x. That is,

(2.6) m Fn,m(x;X*
n,m) ∼  bin( . ; m , Fn(x;xn))

The justification of the statistical inference  based on random sampling of a random sample, and
in consequence the bootstrap is based on an extension of the Glivenko-Cantelli theorem to the
sampling of samples, is given in the following theorem:

3.- Theorem (extension of the Glivenko-Cantelli to the resampling):  For each real x, the
random variable Fn,m(x;X*

n,m) converges almost sure to F(x), for n and m which tend to infinity in
both processes of sampling and in the order indicated. We denote this by

(3.1) Fn,m(x;X*
n,m) →  a.s.  F(x)  as  n → ∞ , m → ∞

           Proof: By Glivenko-Cantelli theorem, as n tends to infinity, Fn converges almost sure to
F(x); besides when m tends to infinity, Fn,m converges to Fn which in turn converges to F(x).
Hence, Fn,m(x;X*

n,m) converges almost sure to F(x).See Bickel and Freedman (1981)

3.1.- Consequences of the extension of  the  Glivenko-Cantelli  theorem:    These   are
similar to the Glivenko-Cantelli theorem: Fn,m(x;X*

n,m) converges in probability and in
distribution to F(x).
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Since the convergence in quadratic mean is not implied by the almost sure convergence,
we will now  state and prove the extension of the Glivenko-Cantelli theorem to the
resampling  in its version of convergence in quadratic mean:

3.2.-  Theorema (extension of the theorem of Glivenko-Cantelli to the resampling).
For each real x the (n,m)-th empirical distribution function Fn,m(x;X*

n,m) converges in quadratic
mean to F(x), when n , m tend to infinity in the order indicated. We denote this by:

(3.2)     Fn,m(x;X*
n,m) →  q.m.    F(x)   as n →  ∞   and  m→   ∞

Proof: We should show that as  n →  ∞   and  m→   ∞  :
(3.3) lim E[(Fn,m(x;X*

n,m) – F(x))2 ] = 0. as  n →  ∞   and  m→   ∞
Using the exact distribution of the random vector ( Fn , Fn,m )’, see del Canto (1985), we get the
result that the expected value of Fn,m(x) is F(x) and in consequence the limit that should be
evaluated in (3.3) is the limit of the variance of Fn,m(x) . Consequently we should evaluate

(3.4) lim(n+m-1)F(x)(1-F(x))/(nm) as  n →  ∞   and  m→   ∞
Hence this limit is 0 (zero).  This in turn proves the extension of the Glivenko-Cantelli theorem to
the random resampling of random samples.

4.- Discussion.

4.1 Consequences of the extension of the Glivenko-Cantelli theorem to resampling.
The most important consequence of the implications of this extension of the Glivenko-Cantelli
theorem is that it enables us to assert that the statistical inference can be done using a random
sample of the population random sample. The estimators of  θ(F) may be constructed using
appropriate  θ(Fn,m).  Next, the probability distribution of such estimators may be determined in
order to construct confidence intervals and test of hypotheses. Besides there also exist the
alternative to estimate the distribution of the estimator by using bootstrap.
 Remark:  In the context of statistical inference based on resampling, the bootstrap can be
considered as the Monte Carlo method with the restriction that only the sample elements of the
observed population sample can be extracted. See del Canto (1992).

4.2 Criticism about statistical inference based on resampling.
In the resampling process, the sample size m can be less than, equal to or greater than n, which is
the size of the population random sample. Whatever be the case, some elements of the random
sample may not appear in the sample of the sample and this “is considered as a loss of
information”.  The answer to this criticism is that we may put together all the data of the random
sample in the sample of the sample, constituting in this way a new joint sample, whose empirical
sample distribution function also converges to F(x) and therefore a new extension of the
Glivenko-Cantelli can be proved. This new sample distribution function results to be a convex
linear combination of the sample distribution function considered before and therefore also
converges to F(x).

Another natural criticism is that “it is necessary to revise completely all the classical
concepts of the statistical inference, so that no contradiction may arise or appear as improper
manipulation of the data”.  Even if it is like this, the advancement of the statistical inference
requires it and besides it is a very motivated work.
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Finally, another criticism comes from the area of sampling of the finite populations. ...
“Why use random sampling and not simple random sample ?.”  Some of the reasons are obvious
but there is an interesting approach with respect to this. It is possible to apply random sampling to
simple random samples and we would come across important situations which should be
considered in such inferences.

5.  Conclusion

The extension of the Glivenko-Cantelli theorem to the resampling enables us to provide a
complete justification of statistical inference based on the random sample of an observed
population random sample. The estimator θ(Fn) of  the population parameter θ(F), using a
random sampling has an expression which is similar to the estimator θ(Fm,n) of the same
parameter using a random sample of the observed population random sample. Finally, since both
Fn and Fn,m converges to F, both θ(Fn) and  θ(Fn,m) are very close to each other in values for large
samples.
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